Моторные лодки, катера, яхты, проекты лодок для самостоятельной постройки, тюнинг мотолодок, лодочные моторы, надувные лодки, технические данные и описания мотолодок  


  Главная>>>   Лодочные моторы>>> Как измерить мощность подвесного мотора

Как измерить мощность подвесного мотора.
Измерьте мощность подвесного мотора: на стенде или мулинеткой

Какую мощность стал развивать мотор после переборки или ремонта, модернизации или форсировки? Какова потеря мощности, вызванная износом?

Рис. 1. Внешняя скоростная (1) и винтовая (2) характеристики мотора
Как измерить мощность подвесного мотора

На эти и многие подобные вопросы наиболее точный ответ дают только испытания, в процессе которых может быть получена внешняя скоростная характеристика (рис. 1), — зависимость развиваемой двигателем мощности от числа оборотов при максимальном открытии дроссельной заслонки.

Непосредственно мощность двигателя не может быть измерена, и определяется косвенным путем - посредством замера крутящего момента и числа оборотов коленчатого вала с последующим расчетом по известной формуле:

Ne= Mкрnкв
716,2
 л. с.,

где Mкр — крутящий момент, кгм; nкв — число оборотов коленчатого вала, об/мин.

Крутящий момент измеряют на специальных тормозных стендах. (Его можно установить для коллективного пользования на любой лодочной стоянке.) Основная и самая сложная его часть - собственно тормоз с весовым механизмом, с помощью которого можно измерять и регулировать задаваемую двигателю нагрузку (тормозной момент).

Рис. 2. Устройство стенда с механическим тормозом
Рис. 2. Устройство стенда с механическим тормозом
1 — топливный бак; 2 — винт регулировки тормозного момента; 3 — испытуемый мотор; 4 — доска для навешивания мотора; 5 — динамометр; 6 — тахометр дистанционный; 7 — пластина (демпфер); 8 — рычаг тормоза; 9 — колодочный тормоз с барабаном; 10 — сварная рама.

Существует много типов механических, гидравлических и электрических тормозов, но самый простой и доступный для самостоятельного изготовления - колодочный (механо-фрикционный) тормоз. Испытательный стенд с таким тормозом состоит (рис. 2) из жесткой стальной (например, сварной из уголка) рамы с «транцевой» доской для навешивания мотора, щитка для закрепления тахометра и силоизмерителя (динамометра), тормозного барабана и колодочного тормоза.

Колодочный тормоз (рис. 3) состоит из чугунного тормозного барабана, насаженного на гребной вал мотора вместо винта, нижней колодки тормоза, жестко связанной с рычагом, и верхней — свободно вращающейся на пальце. Винтом, который изменяет силу натяжения колодок, регулируется тормозной момент. Рычаг подсоединен к силоизмерительному устройству — динамометру. Для гашения колебаний рычага в плоскости вращения тормозного барабана к этому же концу рычага в горизонтальной плоскости приварена стальная пластина.

Перед замером мощности стенд устанавливается в резервуар с водой или прямо на дно водоема так, чтобы обеспечивалось нормальное заглубление «ноги» подвесного мотора. Можно вместо рамы сварить прямоугольный бак и наполнять его водой до необходимого уровня.

Рис. 3. Устройство колодочного тормоза
Рис. 3. Устройство колодочного тормоза
1 — нижняя скоба; 2 — гайка; 3 — втулка; 4 — пружина; 5 — винт регулировки тормозного момента; 6 — верхняя скоба; 7 — винт крепления колодки; 8 — тормозная колодка; 9 — тормозной барабан; 10 — скоба для подсоединения динамометра; 11 — рычаг тормоза; 12 — пластина (демпфер); 13 — кница; 14 — палец.

Мотор запускают с включенным ходом «вперед» при полностью отпущенных колодках тормоза. Следя за тахометром, постепенно увеличивают обороты и так же постепенно затягивают колодки, добиваясь, чтобы двигатель развил максимальное паспортное число оборотов при полностью открытом дросселе (положение ручки «полный газ»). Этот момент — начало измерений. Производится первая запись: показания тахометра в об/мин и показания динамометра в кг. Затем колодки вновь подтягиваются так, чтобы обороты двигателя снизились на 200—300 об/мин, после чего вновь записываются показания приборов. Так ступенями (ручка газа все время в положении «полный газ») через приблизительно равные интервалы снижается число оборотов, и на каждой ступени производится запись показаний тахометра и динамометра. Тормозить двигатель достаточно до 3000—3500 об/мин. После этого производится такое же ступенчатое отпускание колодок с записью показаний приборов и испытание заканчивается, когда обороты двигателя вновь достигнут своего номинального значения.

Крутящий момент (а он равен по абсолютной величине тормозному) вычисляется по формуле:

Mкр= PL кгм,

где Р — показания динамометра, кгс; L — плечо тормозного рычага, измеренное в метрах от оси гребного вала до точки крепления к рычагу тяги динамометра.

Вычисляя мощность, необходимо учитывать передаточное отношение редуктора, так как число оборотов измерялось у коленчатого вала, а тормозной момент на гребном валу.

Ne= Mкрnквiр
716,2
 л. с.,

где iр — передаточное отношение редуктора (iр < 1).

По этой формуле вычисляется значение мощности на гребном валу, т. е. с учетом всех механических потерь в передаче. После подсчета мощности по всем точкам замера строится график зависимости Ne= ƒ(n) (рис. 1).

При использовании тахометра с ценой деления 100 об/мин, динамометра с ценой деления 0,2 кг (и принимая погрешность замера длины рычага ±1 мм) погрешность замера мощности будет лежать в пределах 2—2,5%, то есть при мощности мотора 20 л. с. абсолютная погрешность будет равна ±0,5 л. с. Для практических целей такая точность вполне достаточна.

Можно построить график зависимости мощности от оборотов и не прибегая к испытаниям на стенде. Для этого нужно воспользоваться тарированным лопастным гидравлическим тормозом (мулинеткой). На рис. 4 показана мулинетка, рассчитанная для применения на моторах мощностью 20—25 л. с., а на рис. 5 ее тормозная характеристика — зависимость потребляемой мощности от числа оборотов.

Рис. 4. Мулинетка для подвесных моторов мощностью 20—25 л. с.
Рис. 4. Мулинетка для подвесных моторов мощностью 20-25 л. с.

 

Рис. 5. Тормозная характеристика мулинетки
Рис. 5. Тормозная характеристика мулинетки

При вращении мулинетки, установленной вместо гребного винта, вся мощность мотора расходуется на преодоление сил сопротивления вращению.

Рис. 6. Внешняя скоростная характеристика 2-тактных подвесных лодочных моторов в относительной системе координат
Рис. 6. Внешняя скоростная характеристика 2-тактных подвесных лодочных моторов в относительной системе координат

Поэтому сам процесс измерений очень прост — мулинетка устанавливается вместо гребного винта, запускается мотор (установленный прямо на транце лодки) и при включенном ходе «вперед» на полном газу замеряется число оборотов коленчатого вала. Далее с учетом передаточного отношения редуктора по тормозной характеристике мулинетки определяется мощность, развиваемая мотором на гребном валу при данном числе оборотов. Таким образом находится одна точка внешней скоростной характеристики мотора. Для получения всей скоростной характеристики в интересующем нас диапазоне чисел оборотов необходимо воспользоваться эмпирическими зависимостями (рис. 6 и 7), установленными на основании обработки статистического материала и многократно проверенными автором на практике.

Мощность двигателя внутреннего сгорания (и, в частности, двухтактного) зависит от рабочего объема и числа цилиндров, числа оборотов, теплоты сгорания горючей смеси и ряда безразмерных коэффициентов, характеризующих рабочий процесс.

Рис. 7. График ограничения номинального числа оборотов в зависимости от цилиндровой мощности мотора
Рис. 7. График ограничения номинального числа оборотов в зависимости от цилиндровой мощности мотора

Относительная мощность определяется по формуле:


N
= N
Nmax
(n
ne
)

где вследствие простого алгебраического сокращения размерных величин остаются лишь безразмерные коэффициенты (индикаторный и механический к. п. д., коэффициент избытка воздуха и коэффициент наполнения). Поскольку их относительное изменение от числа оборотов для двухтактных двигателей потребительских подвесных моторов практически одинаково, то в относительной системе координат внешние скоростные характеристики моторов как бы сливаются в одну кривую независимо от числа цилиндров, рабочего объема и системы продувки (рис. 6). Пользуясь этой кривой или ее уравнением, можно по одной известной точке Nmax и зная ne рассчитать всю внешнюю характеристику подвесного мотора в абсолютных координатах.

Для этого необходимо вначале определить обороты мулинетки с учетом передаточного отношения редуктора ip, то есть

nм= nip об/мин

и по тормозной характеристике (рис. 5) найти тормозную мощность N. Делением паспортной мощности на число цилиндров находим цилиндровую мощность Nц и с помощью графика 7 определяем максимальные обороты n. Далее определяются относительные обороты двигателя с мулинеткой


n
= nM
ne

и по графику 6 (или по формуле) находится относительная мощность , а из выражения


N
= N
Nmax

вычисляется максимальная мощность.

Последовательно принимая значения меньше единицы (например, 0,95; 0,9; 0,85; и т. д.), с помощью графика 6 определяем другие точки внешней характеристики.

Следует сказать, что при равных условиях точность этого метода несколько ниже, чем при испытаниях на стенде. Погрешность его определяется, с одной стороны, погрешностью графиков (которая уже независит от экспериментатора), и с другой — погрешностью измерения числа оборотов при испытаниях.

Для того чтобы общая относительная погрешность конечного результата при определении Nmax не превысила 2—2,5%, необходимо измерять число оборотов не грубее, чем ±15 об/мин. К такой точности можно приблизиться, использовав для определения оборотов секундомер и счетчик импульсов, с помощью которых можно определить количество оборотов коленчатого вала за какой-то промежуток времени (не менее 25—30 секунд) и затем подсчитать среднее значение числа оборотов в минуту.

При работе с мулинеткой мотор должен быть заглублен так, чтобы полностью исключалась возможность прососа к ней воздуха; а также обеспечена работа в условиях «безграничной жидкости», т. е. эксперимент должен производиться на глубокой воде и в отсутствие стенок.

Мулинетку можно использовать для сравнительной оценки нескольких однотипных моторов: наибольшую мощность имеет тот мотор, который с той же мулинеткой развивает наибольшее число оборотов.

Графики рис. 5 и 6 могут быть использованы и самостоятельно, когда по каким-либо причинам отсутствует «фирменная» скоростная характеристика. В этом случае с их помощью по паспортным данным мотора Nном и nном может быть построена характеристика, которая является некоторой средней характеристикой для моторов данной марки.

В. А. Баснин.

Смотрите также статью В. В. Вейнберга: Измерьте мощность подвесного мотора: мулинеткой с изменяемой характеристикой.

вернуться в раздел

Поделитесь этой страницей в соц. сетях или добавьте в закладки:

добавить страницу в избранное

Разделы сайта:
Мотолодки, катера, яхты
Мотолодки, катера, яхты. Разное, советы...
Обзор моделей лодок, катеров, яхт
Описания гребных, парусных, моторных лодок, катеров и яхт.
Проекты лодок для самостоятельной постройки
Чертежи и проекты катеров, лодок, яхт.
Тюнинг мотолодок
Тюнинг, доработка серийных лодок.
Лодочные моторы
Отечественные и зарубежные лодочные моторы.
Надувные лодки
Обзор моделей, ремонт, хранение, обслуживание.
Рыбалка
Все о рыбалке, рыбаках и рыбах.
Подводная охота
Любителям подводной охоты.
Уровень воды в реках
Уровень воды в реках РФ. Список гидропостов.
Географические карты
Вся территория бывшего СССР.

поиск по сайту
примеры запросов: проекты катеров, чертежи яхт

Подпишитесь на рассылки:
Новости сайта vodnyimir.ru
Проекты катеров, лодок, яхт для самостоятельной постройки



Rambler's Top100
Рейтинг - яхты и катера
Все права защищены. Копирование материалов сайта vodnyimir.ru запрещено. Все случаи нарушения будут преследоваться согласно закону об авторских правах. Предложения и пожелания отправляйте на admin@vodnyimir.ru. Размещение рекламы на сайте